"""Generator for Sudoku graphsThis module gives a generator for n-Sudoku graphs. It can be used to developalgorithms for solving or generating Sudoku puzzles.A completed Sudoku grid is a 9x9 array of integers between 1 and 9, with nonumber appearing twice in the same row, column, or 3x3 box.+---------+---------+---------+| | 8 6 4 | | 3 7 1 | | 2 5 9 || | 3 2 5 | | 8 4 9 | | 7 6 1 || | 9 7 1 | | 2 6 5 | | 8 4 3 |+---------+---------+---------+| | 4 3 6 | | 1 9 2 | | 5 8 7 || | 1 9 8 | | 6 5 7 | | 4 3 2 || | 2 5 7 | | 4 8 3 | | 9 1 6 |+---------+---------+---------+| | 6 8 9 | | 7 3 4 | | 1 2 5 || | 7 1 3 | | 5 2 8 | | 6 9 4 || | 5 4 2 | | 9 1 6 | | 3 7 8 |+---------+---------+---------+The Sudoku graph is an undirected graph with 81 vertices, corresponding tothe cells of a Sudoku grid. It is a regular graph of degree 20. Two distinctvertices are adjacent if and only if the corresponding cells belong to thesame row, column, or box. A completed Sudoku grid corresponds to a vertexcoloring of the Sudoku graph with nine colors.More generally, the n-Sudoku graph is a graph with n^4 vertices, correspondingto the cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if andonly if they belong to the same row, column, or n by n box.References----------.. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic polynomials. Notices of the AMS, 54(6), 708-717... [2] Sander, Torsten (2009), "Sudoku graphs are integral", Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816.. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019."""importnetworkxasnxfromnetworkx.exceptionimportNetworkXError__all__=["sudoku_graph"]
[docs]defsudoku_graph(n=3):"""Returns the n-Sudoku graph. The default value of n is 3. The n-Sudoku graph is a graph with n^4 vertices, corresponding to the cells of an n^2 by n^2 grid. Two distinct vertices are adjacent if and only if they belong to the same row, column, or n-by-n box. Parameters ---------- n: integer The order of the Sudoku graph, equal to the square root of the number of rows. The default is 3. Returns ------- NetworkX graph The n-Sudoku graph Sud(n). Examples -------- >>> G = nx.sudoku_graph() >>> G.number_of_nodes() 81 >>> G.number_of_edges() 810 >>> sorted(G.neighbors(42)) [6, 15, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 51, 52, 53, 60, 69, 78] >>> G = nx.sudoku_graph(2) >>> G.number_of_nodes() 16 >>> G.number_of_edges() 56 References ---------- .. [1] Herzberg, A. M., & Murty, M. R. (2007). Sudoku squares and chromatic polynomials. Notices of the AMS, 54(6), 708-717. .. [2] Sander, Torsten (2009), "Sudoku graphs are integral", Electronic Journal of Combinatorics, 16 (1): Note 25, 7pp, MR 2529816 .. [3] Wikipedia contributors. "Glossary of Sudoku." Wikipedia, The Free Encyclopedia, 3 Dec. 2019. Web. 22 Dec. 2019. """ifn<0:raiseNetworkXError("The order must be greater than or equal to zero.")n2=n*nn3=n2*nn4=n3*n# Construct an empty graph with n^4 nodesG=nx.empty_graph(n4)# A Sudoku graph of order 0 or 1 has no edgesifn<2:returnG# Add edges for cells in the same rowforrow_noinrange(0,n2):row_start=row_no*n2forjinrange(1,n2):foriinrange(j):G.add_edge(row_start+i,row_start+j)# Add edges for cells in the same columnforcol_noinrange(0,n2):forjinrange(col_no,n4,n2):foriinrange(col_no,j,n2):G.add_edge(i,j)# Add edges for cells in the same boxforband_noinrange(n):forstack_noinrange(n):box_start=n3*band_no+n*stack_noforjinrange(1,n2):foriinrange(j):u=box_start+(i%n)+n2*(i//n)v=box_start+(j%n)+n2*(j//n)G.add_edge(u,v)returnG